metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

May C. Copsey,^a Maravanji S. Balakrishna^b and Tristram Chivers^a*

^aDepartment of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, and ^bDepartment of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India

Correspondence e-mail: chivers@ucalgary.ca

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.004 Å Disorder in solvent or counterion R factor = 0.046 wR factor = 0.127 Data-to-parameter ratio = 13.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The tetralithium derivative of the tetrakis(1-naphthylimido)silicate tetraanion

The title compound, bis(diethyl ether- κO)tetra(tetrahydrofuran- κO)[μ_4 -tetrakis(1-naphthylimido)silane(4–)]tetralithium(I) diethyl ether solvate, [Li₄(C₄₀H₂₈N₄Si)(C₄H₈O)₄-(C₄H₁₀O)₂]·C₄H₁₀O, has been structurally characterized. The compound contains the tetrakis(naphthylimido)silicate tetraanion, which is formally isoelectronic with the orthosilicate anion, [SiO₄]^{4–}. The two halves of the molecule are equivalent, related by a crystallographic twofold rotation axis.

Comment

The synthesis and structural characterization of polyimido anions of *p*-block elements is an area which has flourished in recent years (Brask & Chivers, 2001). Two notable examples are the imido analogues of the orthosulfate dianion, (I) (Fleischer *et al.*, 1997), and the orthophosphate trianion, (II) (Raithby *et al.*, 1997; Bickley *et al.*, 2004). In 2000, the synthesis of the tetraimido silicate tetraanion, (III), as the tetralithium etherate, $[Li(OEt_2)]_4[Si(NR)_4]$ (R = 1-naphthyl) was first reported (Brask *et al.*, 2000), but no structural data could be obtained. Here, we report the first structural determination of a complex containing the tetraimidosilicate tetraanion, the title compound, (IV) (Fig. 1).

Complex (IV) contains a distorted tetrahedral Si atom, bound to four imido N centres. The four imido N atoms are bridged by Li atoms to form an eight-membered Li_4N_4 ring.

 $\ensuremath{\mathbb{C}}$ 2006 International Union of Crystallography All rights reserved

Received 2 June 2006 Accepted 22 June 2006

The molecular structure of complex (IV). Displacement ellipsoids are drawn at the 50% probability level. H atoms and the Et₂O solvent have been omitted, and only O atoms from the coordinated solvent molecules are shown, for clarity. [Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.]

Two of these atoms, Li1 and Li2, are tetrahedral, each being additionally coordinated by two molecules of tetrahydrofuran. The remaining two Li atoms, Li3 and Li3ⁱ [symmetry code: (i) -x, y, $\frac{1}{2} - z$], are three-coordinate and have distorted trigonalplanar geometry, each solvated by one molecule of diethyl ether. The complex contains a further molecule of diethyl ether in the crystal structure. The Si–N bond lengths of 1.735 (2) and 1.738 (1) Å are comparable with previously reported Si–imido distances (Brask *et al.*, 2000).

For comparison, the lithium derivatives of (I) and (II) have been isolated as the neutral complex $S(N^tBu)_4[Li(thf)_2]_2$ (thf is tetrahydrofuran; Fleischer *et al.*, 1997) and the solventseparated ion pair $[Li(thf)_4][P(NR)_4[Li(thf)_2]_2$ (Raithby *et al.*, 1997), respectively. Complex (IV) is a unique example of a tetraimidosilicate tetraanion, prepared from the reaction of SiCl₄ and Li₂(NR). Deprotonation of Si(NHR)₄ is restricted to the formation of di- and tri-anions (Copsey *et al.*, 2006; Brask *et al.*, 2000).

Experimental

The synthesis of (IV) was carried out according to the literature procedure (Brask *et al.*, 2000). Single crystals for this study were grown from a concentrated solution of (IV) in tetrahydrofuran and diethyl ether (1:1) at room temperature over several days.

Crystal data

$[Li_4(C_{40}H_{28}N_4Si)(C_4H_8O)_4-$
$(C_4H_{10}O)_2]\cdot C_4H_{10}O$
$M_r = 1131.29$
Monoclinic, C2/c
a = 27.561 (6) Å
b = 14.829 (3) Å
c = 17.617 (4) Å
$\beta = 118.38 \ (3)^{\circ}$

 $V = 6335 (3) \text{ Å}^{3}$ Z = 4 $D_{x} = 1.186 \text{ Mg m}^{-3}$ Mo K\$\alpha\$ radiation \$\mu\$ = 0.09 mm\$^{-1}\$ T = 173 (2) KBlock, yellow $0.12 \times 0.09 \times 0.08 \text{ mm}$

Data collection

onius KappaCCD area-detector	21125
diffractometer	5558 ii
and ω scans	4207 r
bsorption correction: multi-scan	$R_{int} =$
(SCALEPACK; Otwinowski &	$\theta_{max} =$
Minor, 1997)	
$T_{\min} = 0.992, \ T_{\max} = 0.995$	

Refinement

N

φ

Δ

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.128$ S = 1.025558 reflections 408 parameters H-atom parameters constrained 21125 measured reflections 5558 independent reflections 4207 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.038$ $\theta_{\text{max}} = 25.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0597P)^2 \\ &+ 4.7032P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\max} < 0.001 \\ \Delta\rho_{\max} = 0.22 \ e \ \text{\AA}^{-3} \\ \Delta\rho_{\min} = -0.25 \ e \ \text{\AA}^{-3} \end{split}$$

Table 1			
Selected geometri	c parameters	(Å,	°)

Si1-N1	1.7352 (15)	N1-Li3	2.138 (4)
Si1-N2	1.7375 (14)	N2-Li2	2.033 (3)
N1-Li1	2.026 (4)	N2-Li3	2.100 (4)
N1_Si1_N1 ⁱ	100.20 (10)	$\Omega^{2^{i}} - L^{i2} - \Omega^{2}$	991(2)
N1-Si1-N2	108.92 (7)	O2 - Li2 - O2 $O2 - Li2 - N2^{i}$	116.99 (6)
N1 ⁱ -Si1-N2	120.17 (7)	O2-Li2-N2	121.90 (7)
$N2-Si1-N2^{i}$	99.75 (10)	N2 ⁱ -Li2-N2	81.60 (17)
O1 ⁱ -Li1-O1	100.1 (2)	O3-Li3-N2	133.52 (19)
O1-Li1-N1 ⁱ	115.59 (6)	O3-Li3-N1	140.9 (2)
O1-Li1-N1	122.44 (7)	N2-Li3-N1	83.65 (13)
N1 ⁱ -Li1-N1	82.14 (18)		. ,

Symmetry code: (i) -x, y, $-z + \frac{1}{2}$.

The solvent molecule of diethyl ether is disordered over four positions, two of which are generated by a crystallographic twofold rotation axis. The two located positions, O4/C40–C43 and O5/C50–C53, were refined with occupancy factors of 0.3 and 0.2, respectively, which gave optimal displacement parameters. The O atoms were refined anisotropically and the C atoms were refined isotropically. The pairs of C atoms, C42/C52 and C40/C53, were allowed to refine with the same isotropic displacement parameters. Geometric restraints were applied to obtain reasonable C–C and C–O distances. The H atoms were placed in geometrically idealized positions and refined as riding, with $U_{\rm iso}(\rm H) = 1.2-1.5U_{eq}$ (parent atom). C–H distances are in the range 0.95–0.99 Å.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the University of Calgary and the Natural Science and Engineering Research Council (Canada) for funding.

References

Bickley, J. F., Copsey, M. C., Jeffery, J. C., Leedham, A. P., Russell, C. A., Stalke, D., Steiner, A., Stey, T. & Zacchini, S. (2004). *Dalton Trans.* pp. 989– 995.

Brask, J. K. & Chivers, T. (2001). Angew. Chem. Int. Ed. 40, 3960–3976. Brask, J. K., Chivers, T. & Parvez, M. (2000). Inorg. Chem. 39, 2505–2508.

metal-organic papers

- Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Copsey, M. C., Balakrishna, M. S. & Chivers, T. (2006). Acta Cryst. E62, m1683-m1685.
- Fleischer, R., Rothenberger, A. & Stalke, D. (1997). Angew. Chem. Int. Ed. 36, 1105–1107.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Raithby, P. R., Russell, C. A., Steiner, A. & Wright, D. S. (1997). Angew. Chem. Int. Ed. 36, 649–650.